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Severe Tests in Neuroimaging: What We
Can Learn and How We Can Learn It

M. Emrah Aktunc*y

Considerable methodological difficulties abound in neuroimaging, and several philoso-
phers of science have recently called into question the potential of neuroimaging studies
to contribute to our knowledge of human cognition. These skeptical accounts suggest that
functional hypotheses are underdetermined by neuroimaging data. I apply Mayo’s error-
statistical account to clarify the evidential import of neuroimaging data and the kinds of
inferences it can reliably support. Thus, we can answer the question “What can we reli-
ably learn from neuroimaging?” and make sense of how this knowledge can contribute
to novel construals of cognition.

1. Introduction. Considerable methodological difficulties abound in neu-
roimaging; several philosophers of science, notably Klein (2010) and Ros-
kies (2008, 2010), have called into question the potential of neuroimaging
studies to contribute to our knowledge of human cognition. One general con-
clusion in these skeptical accounts is that functional hypotheses about cogni-
tive processes are underdetermined by neuroimaging data. Yet, functional
neuroimaging research continues to grow, so there is a need to address the
question of what it is that we can learn from neuroimaging. After briefly dis-
cussing works by Klein and Roskies, I will apply to functional magnetic res-
onance imaging (fMRI) Mayo’s error-statistical (ES) notions of severe tests,
error probabilities, and a hierarchical framework of models of inquiry.1 The
ES account helps clarify the evidential import of neuroimaging data and for-
mulate the conditions under which we can reliably infer that we have evi-

1. Parallel ES analyses of other neuroimaging media can be carried out mutatis mu-
tandis.
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dence for or against functional hypotheses. Thus, we can answer the ques-
tion “What can we reliably learn from neuroimaging?” and make sense of
how this knowledge can contribute to cognitive neuroscience and lead to
novel construals of cognition.

2. Skepticism about Functional Neuroimaging. Klein (2010) and Roskies
(2008, 2010) have different arguments based on various premises, but they
both come to similar skeptical conclusions regarding the epistemic value of
neuroimaging. Klein (2010) has raised criticisms directed at the use of sta-
tistical hypothesis testing in neuroimaging experiments. When researchers
compare observed brain activation in a control condition against an exper-
imental condition, where subjects perform the given cognitive task, they test
the null hypothesis that there is no significant difference between the con-
ditions against the alternative hypothesis that predicts a difference. The null
hypothesis assigns probabilities to certain outcomes in the scenario where
it is true, and the probability of a certain outcome under the null hypothe-
sis is its p-value. If the p-value of the observed outcome is smaller than
a predetermined significance threshold, then we have a significant result;
we reject the null hypothesis and conclude that there is a significant differ-
ence between the control and experimental conditions. The central premise
in Klein’s argument is that in neuroimaging it is relatively easy to find sig-
nificant results even when there is no real effect. For example, in order for a
region of the brain to be identified as ‘active’, there has to be a statistically
significant difference between degrees of observed activation in that brain
region across control and experimental conditions, so choosing an overly
liberal threshold for significance may yield spurious results. The charge is
that when we observe significantly high activation in a given brain region,
this may not be because there really is increased task-related activity in that
region, but because we have chosen a significance threshold so liberal that
it picks up background noise as if a real effect. Indeed, this is a real problem
and is known in the ES literature as the simple fallacy of rejection.

Of course, there are factors other than the chosen threshold that may bias
analyses and yield significant results in the absence of a real effect. Klein
(2010) discusses how the signal-to-noise ratio in neuroimaging can be im-
proved by increasing the number of subjects, which increases the sensitivity
of the experiment. Consequently, significant results yielded by the experi-
ment may have occurred only because the number of subjects was increased
and not because there is a real effect. Klein claims that neuroimaging runs
into problems not as a consequence of its inherent characteristics but be-
cause it requires statistical hypothesis testing to draw inferences about func-
tional hypotheses. Because of these and other similar problems, Klein con-
cludes that the best use of neuroimaging experiments is to serve as “first-pass
sanity check[s] on experimental data,” which can never “confirm functional
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hypotheses” (2010, 275). Klein is obviously right in criticizing flawed prac-
tices of hypothesis testing. However, it is crucial to note that these flawed
practices occur not because of any inherent characteristics of statistical hy-
pothesis testing but rather because of misunderstandings and misuses of these
tests. The ES notions of severe tests and error probabilities help remedy these
misunderstandings and misuses, as is described below.

Roskies has also emphasized methodological issues in neuroimaging and
suggested that the perceived epistemic status of neuroimages is higher than
their real epistemic status (2008, 2010). In order to interpret neuroimaging
results correctly, we need to have a way of knowing their actual epistemic
status. According to Roskies, “Determining actual epistemic status will in-
volve a characterization of the inferential steps that mediate between ob-
servations and the phenomena they purport to provide information about”
(2010, 197). She introduces the term inferential distance to refer to the to-
tality of these inferential steps and argues that the problem in neuroimaging
is the mismatch between the “actual inferential distance” and the “apparent
inferential distance.” There are a great number of technical and inferential
procedures in neuroimaging that have to be carried out between initial mea-
surements of brain activation and final neuroimages. Because of the com-
plexity of these procedures, Roskies concludes that the nature of the inferen-
tial steps in neuroimaging cannot be sufficiently characterized, which lowers
the reliability of inferences drawn from neuroimaging data.

Roskies is definitely right that “neuroimages are inferentially distant from
brain activity” (2008, 30) and results are too often overinterpreted. But her
further conclusion that the inferential distance in neuroimaging cannot be
univocally characterized is questionable. Roskies’s inferential distance prob-
lem can be satisfactorily addressed when we apply a hierarchical framework
of models of inquiry to neuroimaging. In this framework,we can breakdown
a neuroimaging study into its component parts from experimental design to
initial data collection, and from preprocessing of raw data to statistical
modeling and analysis. We can then assess the error characteristics associ-
ated with each component. Let us say that an experiment yields significantly
higher activation in a certain brain region in the experimental condition.
Thus, researchers conclude that the cognitive task performed by subjects led
to this result, and they draw the substantive inference that the brain region
with higher activation is involved in the performance of this cognitive task.
Now, we can carry out ES analyses of this experiment looking carefully into
the error characteristics or error probabilities of its component parts. If these
error probabilities are high, then we do not have strong evidence for the
researchers’ conclusion. This is because the significant result may have been
obtained owing to a bias introduced by a component part of the experiment.
For example, the neuroimaging scanner may have been oversensitive and de-
tected background noise as task-related activation, or, as Klein pointed out, the
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chosen significance threshold may have been too liberal. If the error proba-
bilities associated with the components of an experiment are low enough to
rule out or minimize errors, then we can safely conclude that researchers
have support for their substantive inference. This is how we can go the in-
ferential distance, as it were.

3. An Error-Statistical Approach to Functional Neuroimaging. Klein and
Roskies rightly emphasize methodological issues in neuroimaging, but they
both seem to assume that these cannot be satisfactorily resolved. This can
be contested because Mayo’s ES notions of severe tests and error proba-
bilities can be employed to address the issues raised by Klein and Ros-
kies and problems of inference in neuroimaging can be resolved. In order to
tackle problems of inference, we need to know the conditions under which
we can conclude that we have evidence for a hypothesis. We can start with a
weak requirement: for an experiment or test, the weakest requirement is that
it should not be guaranteed to find evidence for some effect regardless of
whether or not there is a real effect. This gives us what Mayo and Spanos
(2011) call the weak severity principle: data x do not provide good evidence
for a hypothesis H if x results from a test procedure with a very low prob-
ability or capacity of having uncovered the falsity of H (even if H is in-
correct). This notion is the fundamental basis of the account that scrutinizes
experiments by analyzing them with respect to their error probabilities—
this is what Mayo calls the ES account. Error probabilities provide the in-
formation on how frequently methods of research can discriminate between
alternative hypotheses and how reliably they can detect errors.

In light of these concepts, we can better address the question “When do
data x provide good evidence for a hypothesis H?” To do this, we can take
Mayo’s full severity principle as a guide, which states, “Data x (produced
by processG) provide a good indication or evidence for hypothesisH ( just)
to the extent that test T severely passes H with x” (Mayo 2005, 100). For a
hypothesis H to pass a severe test T with x, two things must obtain: first,
data x fits or agrees with H, and second, test T would have produced, with
high probability, data that fit less well with H than x does, were H false
(Mayo 1996, 2005). Thus, data x are evidence for hypothesis H just to the
extent that the accordance between x and H would be difficult to achieve
were H false. One must have done a good job at probing the ways one may
be wrong in inferring from an accordance between data x and hypothesis
H to an inference to H (as well tested or corroborated). It is important to
note that the severity of a test is not a feature of only the test itself. Sever-
ity assessments are carried out always on a specific test T, with specific
test result x0 and a specific hypothesis H, so severity is a function of three
things: the test (or the experiment), the data, and the specific hypothesis
about which an inference is drawn (Mayo 2005). We can use the abbrevi-
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ation SEV(T,x0,H ) to mean “the severity with which H passes test T with
x0” (Mayo and Spanos 2011), where the severity function SEV(T,x0,H ) can
be calculated to get a quantitative value between 0 and 1. The notion of se-
verity can also be employed in discussing error characteristics of experi-
mental tools. In any given experiment, to assess whether or not it constitutes
a severe test of the hypothesis of interest, we need to know the error char-
acteristics associated with its components, such as instruments and tech-
niques used for collection and processing of data, and statistical modeling
and analyses.

In fMRI, often the hypothesis of interest, which I call the real effect hy-
pothesis, predicts higher activation in some brain region in response to a
cognitive stimulus or task. We can assess any given experiment with respect
to whether or not it has put a specific real effect hypothesis to a severe test. If
it has not, then we evaluate its results accordingly. If an experiment of low
severity yields a result fitting the real effect hypothesis of interest, this does
not constitute evidence for the hypothesis, because, with high probability,
the experiment would have yielded a fitting result even if the hypothesis
were false. The ES notions of severity and error probabilities help us prop-
erly assess the epistemic value of fMRI studies that may suffer from prob-
lems discussed by Klein, such as liberal significance thresholds or overly
large samples. With high probability, an experiment with an overly large
sample may yield results fitting the real effect hypothesis even when it is
false. Such an experiment constitutes a low severity test of the hypothesis,
and we would not make the mistake of taking its results as evidence for it.
The problem arising from increasing the number of subjects is called the
large-N problem in philosophy of statistics, which can be resolved by com-
plementing statistical tests with Mayo’s notion of severe tests. As N gets
larger, the variance of the data is reduced. Since the variance of the data is the
denominator in the calculation of the test statistic, mathematically, the ob-
served test statistic gets larger independently of the truth or falsity of the al-
ternative hypothesis. Consequently, as N gets larger, it becomes more prob-
able to obtain a significant result in the absence of a real effect, that is, when
the null hypothesis is true. Therefore, the ES account differentiates between
experiments with different numbers of subjects; a significant result is less
indicative of a real effect if it was obtained in an experiment with a large
sample than in an experiment with a smaller sample (Mayo 1996, 2005). To
illustrate quantitatively, here is how values of severity would change with
the same outcome, d(x0) = 1.96, j = 2, and for the same inference, m > 0.2, but
on the basis of different sample sizes, n: for n = 50, SEV(m > 0.2) = .895; for
n = 100, SEV(m > 0.2) = .831; and for n = 1000, SEV(m > 0.2) = .115 (Mayo
and Spanos 2011). As can be seen, the severity of inferring m > 0.2 with
outcome d(x0) = 1.96 decreases as the sample size n gets larger. In fMRI, we
can think of the outcome as significantly increased activation in a brain re-
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gion as predicted by the real effect hypothesis. If such an outcome obtains in
an experiment with an overly large sample, we do not take it as evidence,
because the experiment would be a low severity test of the hypothesis. We
may have obtained that outcome as a result of having a large sample size
that makes for an oversensitive test picking up noise as if a real effect. In this
way, we can resolve problems of inference resulting from overly large sam-
ples in fMRI studies. Other problemsKlein raised can be similarly addressed
when we employ ES notions. For example, we can show that the more lib-
eral the significance threshold in an experiment, the lower is the severity
of that experiment as a test of the hypothesis of interest, because the overly
liberal threshold would increase the probability of obtaining a significant
result in the absence of a real effect.

The ES account can also be employed to address Roskies’s inferential
distance problem. As stated above, the severity of a test is a function of three
things: the experiment, the data obtained in the experiment, and the specific
hypothesis. In order to assess severity, one needs accurate characterizations
of all these aspects of an experiment. To achieve this, we can look at an ex-
perimental inquiry in terms of a hierarchy of models that connect the pri-
mary hypothesis or question being investigated to the detailed procedures of
data generation and analysis. For any experimental inquiry, three types of
models are defined: models of primary hypotheses, models of experiment,
and models of data (Mayo 1996). These models help clearly describe the
local procedures that are required to establish the connection between raw
data and the hypotheses of interest.

The primary model includes the local hypotheses, which may have been
derived from a higher-order scientific theory or from previous studies, and
they correspond to a given primary question or problem. In fMRI, the pri-
mary hypothesis often predicts the amount of activity in a given brain re-
gion. The experimental model provides the link between the data and the
primary hypothesis being tested. Mayo talks about two functions of the ex-
perimental model. The first function is to provide “a kind of experimental
analog of the salient features of the primary model” (Mayo 1996, 133). If the
primary problem is testing a hypothesis, then the experimental model tells
us what is expected to obtain in this experiment if the hypothesis is true,
possibly by using other auxiliary hypotheses. The second function of the
experimental model is “to specify analytical techniques for linking experi-
mental data to the questions of the experimental model” (Mayo 1996, 134).
Because of many sources of error that influence the data collection process,
the data will very rarely—perhaps never—agree exactly with the experi-
mental prediction. In this case, the experimental model may statistically for-
mulate the link between the primary hypothesis and the data model. The
data models provide the answers to two types of questions: the before-trial
question is about how raw data should be collected and modeled to be put in
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canonical form in order to be linked to the experimental model; the after-
trial question is about how we can check whether or not the data collection
procedures were in line with the assumptions of experimental models.

The application of the hierarchical framework of models to fMRI can
help delineate and appraise the experimental procedures that are involved.
We can also find out to what extent, if at all, these procedures may introduce
errors and influence the results independently of the truth or falsity of func-
tional hypotheses, so that we can assess the reliability of the inferences drawn
on the basis of those results. Thus, this framework provides a way of char-
acterizing the steps in the inferential distance between raw data and final
neuroimages. We can start by looking at the kinds of hypotheses that fMRI
experiments are meant to test. Often, these are statements derived from the-
ories of cognition or results of previous studies and take the form “brain
region X is involved in the performance of cognitive task C.” From this
functional hypothesis we can derive the prediction that “when subjects per-
form C, there is going to be a significant amount of activation in brain re-
gion X.” Along with the functional hypothesis, this prediction can be placed
in the primary model. In fMRI, the connection between the primary hy-
pothesis and its experimental analogs can be made by stating what would
happen in the experiment if the primary hypothesis is true: “as subjects in
the fMRI scanner perform an example of the cognitive task C, the scanner
will register a significantly high amount of activation in brain region X.”

Designing the experiment, choosing the experimental task, and other re-
lated aspects would be placed in data models. The experimental design en-
sures that we get the kind of data to test the primary hypothesis; hence, it
helps connect the actual experiment to experimental models and primary
hypotheses of the inquiry. Once we have raw data, we have to put them in
canonical statistical form in order to carry out statistical analyses, which is
not easy because fMRI scanners yield extremely complex data sets. Deci-
sions about preprocessing steps such as the use of spatial and/or temporal
filters, signal averaging, and any other necessary procedures would be placed
in data models. Once preprocessing is complete, we have to obtain a statis-
tically adequate model of the data generating mechanism and then carry out
significance tests to make inferences about the primary hypothesis. All these
procedures would also be placed in the data models. The application of this
hierarchical framework provides a more complete understanding of how
an fMRI experiment works and what it can and cannot give us. Once we
identify and correctly place the component parts of an experiment in this
framework, we can then assess the error probabilities, or error characteris-
tics, associated with each component. Thus, we can find out how and to
what extent they may introduce errors in the experiment. Naturally, flesh-
ing out the details of how fMRI works and how these error probabilities
can be assessed is beyond the scope of this paper. I have provided in-depth
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treatments of these topics elsewhere (Aktunc 2011, 2014). Here I focus
on a further elaboration of what goes in the primary model of an fMRI
experiment.

4. Kinds of Hypotheses in fMRI. As seen above, a statement of the form
“Brain region X is involved in the performance of cognitive task C” is
placed in the primary models as the hypothesis to be tested in an fMRI
experiment. However, this statement is ambiguous; one has to consult some
basic characteristics of fMRI to disambiguate it. The goal in fMRI is to
relate changes in brain physiology over time to an experimental manipu-
lation. This relation is established in terms of the hemodynamic response,
also known as the blood-oxygenation-level-dependent (BOLD) response. If
a certain brain region is involved in the performance of a cognitive task,
then, when an individual performs it, there is going to be increased activa-
tion in that region of the brain. Increased activation causes an increased
need for energy, and this leads to an increase in local glucose metabolism
and oxygen consumption. Oxygen is carried to cells by oxygenated hemo-
globin in the blood, so there results an imbalance between concentrations
of oxygenated and deoxygenated hemoglobin in activated regions. Since
these two types of hemoglobin have different magnetic properties, the im-
balance leads to inhomogeneities in the magnetic field. The fMRI scanner
detects these inhomogeneities and thus provides data on hemodynamic ac-
tivity in terms of the magnitude of the BOLD response (Huettel, Song, and
McCarthy 2008).

Huettel et al. (2008) state that in a typical fMRI study three distinct
kinds of hypotheses are involved:

• Hemodynamic hypothesis: a hypothesis about relationships between
hemodynamic activity and performance of cognitive tasks.

• Neuronal hypothesis: a hypothesis about neuronal activity. Since
fMRI does not directly measure neuronal activity, we cannot know
for certain the amount of neuronal activity; researchers assume that
if the observed hemodynamic activity is high, then neuronal activity is
also high.

• Theoretical hypothesis: essentially a hypothesis about cognitive func-
tion. Researchers use fMRI results to address questions about how
cognitive processes work and how they are realized by which neural
structures and processes.

A crucial question is, which of these three kinds of hypotheses can we
put to severe tests in an fMRI experiment? Since fMRI gives us data only
on hemodynamic activity, it appears that hypotheses about hemodynamic
activity can, at least potentially, be put to severe tests in fMRI experiments.
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These hemodynamic hypotheses can be formulated in terms of statistical
hypotheses, which can then be tested against fMRI data. Researchers want
to see what differences there are, if any, between amounts or patterns of
activation in certain regions of the brain across control and experimental
conditions. Often, the hemodynamic hypothesis predicts higher activation
in the experimental condition. We can use m0 to designate mean hemody-
namic activation (in a certain brain region) in the control condition, and we
can use m1 to designate mean hemodynamic activation (in the same region)
in the experimental condition when subjects perform the chosen cognitive
task. These twomeans,m0 andm1, aswell as the difference between them,m12
m0, are unknown parameters, and researchers are interested in making infer-
ences about the differencem12m0. Statistical hypotheses about the difference
between m0 and m1 can be stated as null and alternative hypotheses in a sig-
nificance test. In statistical hypothesis tests, we can test the null hypothesis,
H0: m1 2 m0 = 0, versus the alternative hypothesis, H1: m1 2 m0 > 0, which
are formulated in the context of a statistical model of fMRI data. The alter-
native hypothesis so formulated is connected through a statistical model of
data to the hemodynamic hypothesis, which predicts a significantly higher
amount of activation in a certain brain region when subjects perform the
chosen cognitive task. In an fMRI experiment, the real effect hypothesis
referred to before is no other than the hemodynamic hypothesis. The critical
point is that, using error probabilities, we can find out whether or not spe-
cific fMRI experiments constitute severe tests of specific hemodynamic hy-
potheses. Thus, fMRI data do have evidential import for hemodynamic hy-
potheses.

The neuronal and theoretical hypotheses are not subjected to severe tests
by fMRI. The neuronal hypothesis makes an assertion about neuronal ac-
tivity, and we cannot reliably infer much about that from fMRI data. For the
observed hemodynamic activity could be due to factors other than neuronal
activity, such as the activity of glial cells (Huettel et al. 2008). Logothetis
(2008) reinforces the point that observed hemodynamic activation does not
always mean that it was caused by neuronal activity. Therefore, the neuro-
nal hypothesis could be false, and yet the fMRI experiment would not de-
tect this. As for the theoretical hypothesis, fMRI obviously does not test for
the existence of cognitive modules or functions as defined by theories of
cognitive science. This is related to the criticisms of neuroimaging raised
by Uttal (2001) and Hardcastle and Stewart (2002). They have argued that
there is an inherent circularity in assuming the existence of localized and
well-defined cognitive modules prior to doing an fMRI experiment and
then taking the results of the experiment as support for modularist conclu-
sions. When Uttal (2001) and Hardcastle and Stewart (2002) raise the cir-
cularity problem and when Klein (2010) calls into question the evidential
value of fMRI data for functional hypotheses, they are talking about prob-
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lems of using neuroimaging results as support for theoretical hypotheses.
The ES approach shows that fMRI data cannot be taken as evidence for
these types of theoretical hypotheses, but at the same time, it helps identify
what we can reliably take as the fMRI finding, specifically whatever the
hemodynamic hypothesis states in an experiment provided that the related
inference to H1: m1 2 m0 > 0 passes severely with the data obtained in that
experiment. This hemodynamic finding can then be used as an additional
constraint on theories of cognitive science. Figure 1 summarizes the con-
clusion of the discussion above. The link between the hemodynamic hy-
pothesis and H1: m1 2 m0 > 0 shows that the hemodynamic hypothesis is
embedded into a statistical model of the data and is framed in terms of the
parameters m0 and m1.

5. Hemodynamic Findings and Novel Construals of Cognition. I have
argued above that the hemodynamic hypothesis need not be underdeter-
mined by fMRI data, or at least the corroboration that hemodynamic hy-
potheses gain from fMRI experiments is not shaken by the underdetermi-
nation neuronal or theoretical hypotheses may suffer. In response, one may
be compelled to ask, what is hemodynamic knowledge good for? In addi-
tion to providing novel constraints on existing theories, hemodynamic find-
ings are helpful in the development of new models of cognition. I wish
to illustrate this with a set of hemodynamic hypotheses well known as the
hemispheric encoding/retrieval asymmetry (HERA) model.

The HERA model began as a straightforward description of empirical
regularities found in positron emission tomography (PET) studies of mem-
ory; although it works differently from fMRI, PET, too, provides measure-
ments of cerebral blood flow, so it can support hemodynamic hypotheses.
Researchers had obtained differential activation patterns in left and right pre-

Figure 1.
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frontal cortical regions when subjects engaged in encoding and retrieval tasks
of episodic memories. Here I am interested in observed relationships be-
tween hemodynamic activity and performance of operationally well-defined
cognitive tasks. In the context of HERA, the terms ‘semantic memory’ and
‘episodic memory’ can be used simply to refer to these different kinds of
tasks without having to worry too much about the theoretical baggage these
terms may carry. The HERA model was proposed in a data-driven manner;
in a series of PET experiments, subjects performed three types of tasks: se-
mantic memory retrieval, episodic memory encoding, and episodic memory
retrieval. Tulving et al. (1994) summarized regularities in observed patterns
of brain activation: (1) left prefrontal cortical regions are activated in seman-
tic memory retrieval to a greater extent than right prefrontal cortical regions,
(2) left prefrontal cortical regions are activated in encoding novel features
of retrieved information into episodic memory to a greater extent than the
right prefrontal cortical regions, and (3) right prefrontal cortical regions are
involved in episodic memory retrieval to a greater extent than left prefrontal
cortical regions.

Following this initial proposal, and in light of new findings from fMRI
experiments with better scanners and sharper experimental design, Habib,
Nyberg, and Tulving (2003) reformulated HERA to be stricter and more
precise in its assertions. In this reformulation there were two specific hemo-
dynamic hypotheses that were expressed using abbreviations: ‘Enc’ meant
encoding, ‘Ret’ meant retrieval, ‘L’ stood for a given left prefrontal cortical
region, and ‘R’ stood for the corresponding region in the right prefrontal
cortex. Combinations of task (Enc or Ret) and regions (L or R) stood for
the observed activation during a given task in a given region. Thus, the
two hemodynamic hypotheses that constitute the HERA model were stated:
(1) (Enc L2 Ret L) > (Enc R2 Ret R) and (2) (Ret R2 Enc R) > (Ret L2
Enc L) (Habib et al. 2003, 241). Since the reformulation of HERA, sev-
eral neuroimaging experiments have yielded results that supported the HERA
model (e.g., Babiloni et al. 2006; Okamoto et al. 2011).

The HERA model was proposed as a description of a set of findings
showing an asymmetry between encoding and retrieval tasks in episodic
memory. Regardless of what large-scale theory one adopts, the HERA model
stands as a set of hemodynamic findings, which came out of a data-driven
approach and did not assume too much about theories of memory systems.
Take away terms like semantic memory or episodic memory, and we can
still talk about the HERA model in terms of specific, well-defined remem-
bering tasks. The hemodynamic findings would still stand if theories of
cognitive science change and new theories differently divide and categorize
human memory, or if they even exclude categorizations. HERA is a contri-
bution to cognitive neuroscience, and its development illustrates how ex-
perimental knowledge in neuroimaging grows. When we look at fMRI with
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an eye toward appreciating the kind of knowledge it can reliably provide, it
appears that a more fruitful approach is seeing neuroimaging experiments
as tools for expanding our knowledge of relationships between cognition
and hemodynamic processes in the brain rather than seeing them as merely
novel constraints on existing theories.

Furthermore, the growth of hemodynamic knowledge can help research-
ers develop novel conceptualizations of cognition and its substrates in the
brain. Let us recall from above that observed hemodynamic activity could
be due to factors other than neuronal activity, such as the activity of glial
cells. The traditional view of glia is that they passively support and maintain
neurons, support neurotransmission, maintain ionic balance in extracellular
space, and insulate axons to speed up action potentials. However, recent
findings suggest that especially astrocytes, a type of glia, have more active
roles in brain function. New research shows that glia are involved in synapse
formation, modulation of synaptic function through bidirectional commu-
nication with neurons, and regulation of blood flow. Astrocytes talk to each
other through waves of calcium ions, terminate neurotransmitters, and me-
diate their recycling. Astrocytes also talk to neurons; they monitor and re-
spond to neuronal activity and possess the same receptors as neurons. Neu-
rotransmitters released by neurons activate Ca-based signaling in astrocytes,
which release neuroactive substances and signal back to neurons, thus form-
ing a feedback loop and enhancing or inhibiting neuronal activity (see Bezzi
and Volterra 2001; Allen and Barres 2009).

Of course, there is still a lot to learn about glia and their functions, but
these new findings force a rethinking of the fMRI BOLD response with
respect to the kind of activity it may point to in the brain. The traditional
view of glia may have created a “neuronal bias” in cognitive neuroscience,
which has come to have a neuron-centric view of the brain and cognition.
Perhaps it is time to revise our neuronally inspired view and integrate the
recent discoveries about glial function in our theoretical construals of cog-
nition. When fMRI is freed from the neuronal bias, it can help greatly in
such revisions as a source of hemodynamic knowledge. Since fMRI does
not tell us whether increased activation is due to either glial or neuronal
activity, specific inferences to glial or neuronal activity may not be reliable.
However, inferences from fMRI results to increased hemodynamic activity
are reliable provided that the given experiments constitute severe tests of
the hemodynamic hypotheses of interest. These hypotheses can be inter-
preted to refer to the combined workings of glia and neurons that occur
when subjects perform cognitive tasks. Thus, hemodynamic findings can
be fruitful in the development of novel conceptualizations of how the hu-
man brain gives rise to cognition incorporating glial contributions to cog-
nitive processing. These conceptualizations can usher in new connectionist
or dynamic models of cognition inspired by not just neurons but also glia,
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which would help researchers gain novel and broader insights into cogni-
tion and its substrates in the brain.
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