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Abstract: Duhem’s problem arises in different fields of science, especially in 

contexts where the tools and procedures of measurement and analysis are numerous 

and highly complex. Several philosophers of cognitive science, as well as cognitive 

scientists, have pointed to its manifestations in fMRI as grounds for skepticism 

regarding the epistemic value of neuroimaging results. I offer an alternative approach 

to neuroimaging, based on Deborah Mayo’s error-statistical account, to address 

Duhemian arguments for skepticism of neuroimaging in philosophy of cognitive 

science. Duhem's problem in fMRI is more fruitfully approached in terms of error 

probabilities as formulated by Mayo. This is illustrated in examples such as the use 

of probabilistic brain atlases, comparison of different preprocessing protocols with 

respect to their error characteristics, and statistical modeling of fMRI data. These 

examples demonstrate the ways in which we can better understand and formulate the 

general methodological problem and direct the way toward more balanced 

approaches to neuroimaging in philosophy of cognitive science that will more 

accurately identify what to be skeptical about and what epistemic contribution 

neuroimaging can reliably provide.  

 

Duhem’s problem arises when a scientist does an experiment, or a series of experiments, to 

test some hypothesis H and gets a result that does not agree with the hypothesis. One 

construal of the problem is to think of it in terms of a modus tollens of the type Popper 

discussed: If hypothesis H, then data e. Not-e. Therefore, not-H. Of course, in actual 

scientific practice, things do not work this way. It is rather like this: If H1, H2, H3,…, Hn 

and A1, A2, A3,…,An, then e. Not-e. Therefore, not-H1 or not-H2 …, or not-A1 or not-A2… 

where H1 through Hn and A1 through An are auxiliary hypotheses and assumptions 

involved in the experiment that yielded not-e. The latter inference is the only one that 

deductively follows. Thus, we do not know if it is the hypothesis that we should blame for 
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not-e and falsify H, or we should hang on to H as it may be any of the auxiliary hypotheses 

or assumptions that are responsible for obtaining not-e. Several solutions to Duhem’s 

problem have been proposed by philosophers of science. In this paper, I will first discuss 

how Duhem’s problem manifests itself in functional neuroimaging, looking at fMRI as a 

representative neuroimaging medium, and then propose how it may be addressed 

employing the error-statistical notions of severe tests and error probabilities. 

The goal in an fMRI experiment is to relate changes in brain physiology over time 

to an experimental manipulation (Huettel et al., 2008). One essential type of inference is 

about where in the brain, if anywhere, there is significant activity measured by the fMRI 

scanner as participants perform a cognitive task of interest compared to a control condition 

in which they do nothing or do a simple task. This kind of inference is mostly drawn across 

participants; it can take the form “participants had significant activity in brain region X as 

they performed cognitive task C.” In fMRI experiments, this kind of inference is usually 

embedded into a statistical model and linked to the alternative hypothesis in a Neyman-

Pearsonian significance test. This alternative hypothesis can be framed in terms of 

parameters µ0 and µ1 with µ0 designating mean activation in a certain brain region X in the 

control condition and µ1 designating mean activation in the same region X in the 

experimental condition in which participants perform the cognitive task of interest. The 

alternative hypothesis takes the form Ha: µ1 - µ0 > 0 to be tested against the null hypothesis 

H0: µ1 - µ0 = 0 in a significance test formulated in the context of a statistical model of the 

fMRI data. At first glance, this seems to be unproblematic assuming that the many aspects 

of the experiment, such as statistical modeling and analyses, were free of biases and/or 

misspecification. Later I will get back to issues of statistical models of fMRI data, but there 

are other difficulties that arise in fMRI before the stage of statistical modeling and 

significance tests. Neuroimaging researchers, e.g. Huettel et al. (2004; 2008), point to 

certain issues about inferences to mappings between patterns of neural activity and specific 

brain regions. These issues stem from the difficulty of satisfactorily addressing questions 

such as ‘how do neural activity map onto neuroanatomy?’, ‘how consistent is that mapping 

across participants?’, or ‘how do functional data "correspond" to underlying 

neuroanatomy?’ 
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To address these questions, fMRI data have to be mapped onto high resolution 

structural images. However, we have to remember the fact that people’s brains vary with 

respect to size, shape, orientation, and gyral anatomy. Brain sizes of two participants in a 

given fMRI experiment may differ by 30 per cent. A hidden assumption in data analyses is 

that in each voxel (volumetric pixel) the fMRI scanner represents a unique and unchanging 

location in the brain. Given neuroanatomical variability, this assumption is always wrong. 

For example, voxel M may correspond to region X in one participant while the same voxel 

may correspond to region Y in another participant. Brain shapes of individuals differ a 

great deal, as in long and thin versus short and fat brains. The organization of sulci and 

gyri is also variable across individuals in ways that major landmarks in the brain may be at 

different positions and differently oriented across individuals. Because of neuroanatomical 

variability, when we draw an inference of the form “participants had significant activity in 

brain region X as they performed cognitive task C” we do not know  whether or not in 

each participant the activity was really in region X. For a given participant B, it may be 

true that there is significant activity in his/her brain, but it may be in region Y adjacent to 

region X. That is, what corresponds to region X according to the mapping used by the 

fMRI scanner may in fact be region Y in participant B’s brain. This is problematic for any 

generalizations that associate a brain region with a given cognitive process. For example, 

let us say that in an experiment participants were asked to perform cognitive task C and the 

results show that they had significant activation in brain region X. We conclude that region 

X is involved in the performance of cognitive task C. However, participant B, whose brain 

anatomy differs from other participants, performed the same cognitive task but the 

activation may have been in region Y of her brain. While we may assume that she had 

significant activation in region X, we do not know if it really was region X or region Y that 

was activated, because we did not take into account neuroanatomical variability. Of course, 

neuroanatomical variability in other participants’ brains may likewise complicate our 

inferences. Therefore, our generalization may have been in error and we would not know if 

we committed this error or how probable it was that we committed this error in this 

experiment.  

To address this problem, researchers apply a procedure called normalization in 
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which shape differences across brains are compensated for by mathematically stretching, 

squeezing, and warping each brain so that it is the same as other brains. In most 

normalization procedures the Talairach stereotaxic space is used, which is a coordinate 

system of the brain that defines locations of brain structures in terms of their coordinates 

(Talairach & Tournoux, 1988). The actual brain that was used by Talairach and Tournoux 

to develop this system was that of an elderly lady. This creates problems of 

representativeness, because participants in fMRI experiments would probably have brains 

that are different from the brain that is taken as a model by the Talairach space. 

Nonetheless, the probability of drawing false inferences may be reduced to some extent by 

normalization. However, since we do not have empirical measures of the variability across 

brains and the representativeness of the brain used in the Talairach space is questionable, 

we cannot safely assume that errors due to neuroanatomical variability are sufficiently 

reduced. In other words, normalization based on Talairach space does not give us the 

accurate, or even approximate, error probabilities associated with inferences of the form 

“participants had significant activity in brain region X as they performed cognitive task C.”  

Let us state the problem in Duhemian terms. In this context, our experimental 

hypothesis may be stated thus: H: Brain region X is involved in cognitive task C. Then, the 

modus tollens will be the following: If H: brain region X is involved in cognitive task C, 

then e: as participants perform C, there will be a significantly higher level of activity in X 

compared to the control condition where participants do nothing or perform a simpler or 

different task. As described above, this experimental hypothesis is linked to the statistical 

alternative hypothesis Ha: µ1 - µ0 > 0 to be tested against the null hypothesis H0: µ1 - µ0 = 0 

in a significance test formulated in the context of a statistical model of the fMRI data. Let 

us assume we carry out the experiment and we do not observe significantly higher activity 

in X, so we get not-e. With this result, we do not reject the null hypothesis. Therefore, we 

conclude not-H; brain region X is not involved in the performance of cognitive task C. To 

this conclusion we can object with the Duhemian argument that in actual scientific 

practice, especially fMRI, experiments are highly complex in their several components and 

the inferential procedure is rather like this: If H1, H2, H3,…, Hn and A1, A2, A3,…,An, then 

e. Not-e. Therefore, not-H1 or not-H2 … or not- Hn, or not-A1 or not-A2… or not- An where 
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H1 through Hn and A1 through An are auxiliary hypotheses and assumptions of the 

experiment that yielded not-e. H1 would be the hypothesis above; namely “brain region X 

is involved in cognitive task C” and e would be the prediction “as participants perform C, 

there will be significant activity in X.” Put simply, the normalization procedure is going to 

be one of the auxiliary assumptions, say A1, and according to this assumption, 

normalization takes care of any neuroanatomical variability across participants 

endangering the reliability of inferences. If not-e is obtained, then one could blame A1 for 

obtaining not-e; that is, one could say that the normalization procedure was not sufficiently 

effective. Perhaps there was a significant anatomical mismatch between the mapping used 

by the fMRI scanner and participants’ brains. If we remember the shortcomings of the 

normalization procedure based on the Talairach space, one could easily, and rightly, raise 

this objection and suggest that the blame for obtaining not-e should be put on the 

ineffectiveness of the normalization procedure and not on the falsity of our experimental 

hypothesis. 

Similar objections can be raised about other aspects of an fMRI experiment, for 

example we could say that the fMRI scanner was not sensitive enough to detect activity or 

that the procedure for increasing the signal to noise ratio was not effective. In fMRI, data 

are collected as a time series, a large amount of data on the hemodynamic processes in the 

participant’s brain are acquired in temporal order at a specified rate as the subject performs 

a cognitive task. Each session consists of multiple runs of presentation of the cognitive task 

and each run includes single images of the brain called volumes. Volumes consist of 

images of slices of the brain and slices consist of three-dimensional voxels. A matrix of 

voxels makes up the slice where the matrix may be of size 64x64 or 128x128. In an 

experiment that studies the entire brain there may be as many as 25 slices. For example, in 

an experiment where the size of the voxel matrix is 64x64 and there are 25 slices in the 

volume, there would be time series data from a total of 102,400 voxels to be processed and 

analyzed. The fMRI data set can be thought of as a four-dimensional matrix; voxels by 

voxels by slice by time. In a simple 6-minute run of an experiment that covers the entire 

brain and where the fMRI scanner delivers an excitation pulse every second, the four-

dimensional matrix of data be 64x64x25x360, where 64x64 is the size of the voxel matrix, 
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25 is the number of slices, and 360 is the number of volumes since data from the entire 

brain are recorded every second (Huettel et al., 2004; pp.186-188). Because of the 

complexity of the fMRI experiment as a whole and the massive size of raw data sets, 

several computational procedures, collectively called “preprocessing,” are needed to obtain 

data sets in canonical form so that statistical tests can be carried out on the data. 

Due to the multiplicity of experimental procedures and inferential steps in fMRI 

studies, it is extremely easy to raise Duhemian objections when we obtain results that 

disagree with our experimental hypothesis. Of course, such objections can be raised, too, 

for experiments the results of which agree with the hypotheses tested. Hence, several 

philosophers of science have put forth skeptical arguments on the basis of this general 

Duhemian problem in neuroimaging. One common theme in these arguments is that this 

problem lowers the reliability of inferences and renders ambiguous the findings in 

neuroimaging experiments. Bogen (2010) has argued that the dependence of fMRI on 

complex inferential procedures calls into question the reliability of fMRI as an 

observational tool, because it is difficult in this kind of experiment to pinpoint what exactly 

is observed. He writes that fMRI is a type of science where “evidence is produced by 

processes so convoluted that it’s hard to decide what, if anything has been observed” (ibid., 

p. 11). In such a construal of fMRI methodology, the Duhemian difficulty seems to be 

taken to an extreme.  According to Bogen, the problem seems to be even more difficult 

than pinpointing blame for a negative result, because he suggests that, in an fMRI 

experiment, we cannot even be sure what the result is, if there is any.  

Adina Roskies is another philosopher of science who has emphasized the 

methodological complexity of neuroimaging and the problems it creates. She employs a 

distinction between the actual versus perceived epistemic status of conclusions and 

suggests that the perceived epistemic status of neuroimages, i.e. the form in which 

neuroimaging findings are presented, is higher than their real status (2008; 2010). Of 

course, in order to interpret results correctly, we need to determine the actual epistemic 

status. Roskies claims that “determining actual epistemic status will involve a 

characterization of the inferential steps that mediate between observations and the 

phenomena they purport to provide information about. This characterization will include 
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both the nature of the steps, and their relative certainty…” (Roskies, 2010; p.197). Roskies 

introduces the term inferential distance to refer to the totality of these inferential steps; the 

more the inferential steps the bigger the inferential distance. In the fMRI literature, some of 

these steps are referred to as preprocessing of data, but statistical modeling and analysis of 

data would also be included in what she calls inferential steps. 

As Roskies’s diagnosis goes, the problem in neuroimaging is the mismatch 

between the “actual inferential distance” and the “apparent inferential distance” between 

actual brain activity and the neuroimages that are presented as findings. She writes; “I use 

‘actual inferential distance’ to refer to the inferences explicitly employed in a scientific 

practice, while ‘apparent inferential distance’ indicates a more subjective measure 

characterizing the confidence people place in a conclusion on the basis of evidence” 

(ibid.). Roskies is definitely right in suggesting that the tendency to overinterpret fMRI 

results may lead to erroneous conclusions. However, her further assumption that inferential 

distance in fMRI cannot be univocally characterized can be questioned. It is definitely a 

fact that there are a great number of technical and inferential procedures in fMRI 

experiments that have to be carried out between initial measurements of brain activation 

and neuroimages. These inferential steps require complicated computational procedures on 

immensely large data sets and, because of the complexity of these procedures, Roskies 

says that the number and nature of these inferential steps cannot be sufficiently 

characterized. This, she suggests, lowers the reliability of inferences drawn from data, 

which leads her to a pessimistic view about the epistemic value of fMRI findings. 

How can we address these Duhemian problems in neuroimaging? I wish to 

approach this question from the perspective of Mayo’s error-statistical account (Mayo, 

1996; 2005), which offers the kind of conceptual machinery for dealing with the complex 

nature of functional neuroimaging. The crucial point is that Roskies’s inferential distance 

problem can be satisfactorily addressed when we break down an fMRI inquiry into its 

component parts. Essentially, these components include design of experiments, collection 

and preprocessing of behavioral and neuroimaging data, and statistical modeling and 

inferential procedures such as correlation analyses and hypothesis tests. As required by the 

error-statistical account, we can assess in a piece-meal fashion the error characteristics 
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associated with each component. A general problem of inference arising in functional 

neuroimaging is the difficulty and/or lack of assessments of error probabilities, or error 

characteristics, of the component procedures employed in experiments. The Duhemian 

problem can manifest itself in any of these procedures and it has to be addressed at each 

stage it arises. 

The specific issue of inferences of the form “participants had significant activity in 

brain region X as they performed cognitive task C” is just one of these stages where the 

problem of assessing error probabilities arises. This problem arises, because, in many 

experiments, we do not have empirical measures of the variability across participants’ 

brains. We do not know how probable it is to misidentify brain regions to be paired with 

observed brain activity. This problem can be formulated in terms of Mayo’s error-

statistical account, according to which the error probabilities associated with the 

experimental procedure, instrument, or test, are needed in order to assess whether or not 

the experimental result constitutes good evidence for the hypothesis tested in that 

experiment. If these error probabilities are difficult to assess and/or not assessed at all, then 

we have a problem regarding the inference we may wish to draw on the basis of the 

experimental result. This is precisely the issue in the specific kind of error stemming from 

neuroanatomical variability. 

The problem can also be described in terms of the error-statistical notion of severe 

tests. Mayo’s severity principle states: "Data x (produced by process G) provide a good 

indication or evidence for hypothesis H (just) to the extent that test T severely passes H 

with x." (Mayo, 2005; p. 100). When does a hypothesis H  pass a test T severely with data 

x? For this, two things must obtain;  first, data x fits or agrees with H, and second, test T 

would have produced, with high probability, data that fit less well with H than x does, were 

H false (Mayo, 1996; 2005). The idea here is that data x is evidence for hypothesis H just 

to the extent that the accordance between x and H would be difficult to achieve were H 

false. In other words, one must have done a good job at probing the ways in which one 

may be wrong in inferring from an accordance between data x and hypothesis H that H is 

true (or is well tested or corroborated). Here, a very important point to note is that the 

severity of a test is not a feature of only the test itself. Rather, it is a function of a group of 
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things; namely, the test, (or the experiment, broadly defined as the procedures that 

generated the data), the data, and the specific hypothesis about which an inference is drawn 

(Mayo, 2005). Thus, severity assessments are always carried out post-data with respect to a 

specific inference. 

It should be noted that although the above is mainly about experiments and 

statistical tests, the notion of severity can be employed in discussing the error 

characteristics of research tools. In fMRI, the complex workings of neuroimaging tools and 

processes require scrutiny just as well as statistical models and analyses. The normalization 

procedure in fMRI to correct for neuroanatomical variability is just one of these procedures 

which need to be analyzed with respect to their error characteristics. One needs to assess 

the error probabilities, stemming from neuroanatomical variability, associated with 

inferences of the form “participants had significant activity in brain region X as they 

performed cognitive task C”. That is, we have to do a good job at probing the ways in 

which we may have been wrong in inferring that activity was in region X. Several 

participants may have had activity in region Y and we need to take into account this 

possible source of error. If we want to have severe tests of hypotheses in fMRI 

experiments, we need to assess the probabilities associated with this and other kinds of 

errors. If these error probabilities are found to be low, then we can statistically argue that it 

was very improbable that we committed those errors. Thus, by utilizing these error 

probabilities, we can improve the reliability of our inferences. 

In order to control for and minimize errors due to neuroanatomical variability, 

some scientists suggest using probabilistic spaces based upon combining data from 

hundreds of neuroanatomical scans. One probabilistic space used in normalization is the 

Montreal Neurological Institute (MNI) template based on hundreds of brain images 

(Mazziotta et al., 1995). This a constructive step toward approximating more closely the 

actual error probabilities associated with inferences to hypotheses about relationships 

between cognitive performance and activation in certain brain regions. Of course, there 

may be biases in this atlas and there is always room for improvement. Indeed, other groups 

of researchers have been working in collaboration with the Mazziotta group for updates. 

Duncan (2009) in the Discover magazine reported that the team of researchers studied 
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scans of 450 brains and used hundreds of thousands of images taken from 7,000 people 

around the world as they updated the atlas. A more recent probabilistic brain atlas was 

developed by a group of researchers at the University of California, Los Angeles (Shattuck 

et al., 2007). In this probabilistic atlas, 56 brain structures were labeled in anatomical MRI 

scans and, for every voxel, probabilities of belonging to each of those 56 structures were 

calculated. 

In order to illustrate how the error-statistical reasoning would work on the basis of 

a probabilistic brain atlas, let us assume that we do an fMRI experiment on the neural 

substrates of working memory. Previous studies have shown that the caudate nucleus, a 

brain structure that is connected with the thalamus and higher cortical structures, is 

involved in certain working memory tasks (among others, see Baier et al., 2010; Provost et 

al., 2010). We test the experimental hypothesis H, “the caudate nucleus is involved in the 

performance of working memory task W.” As above, this experimental hypothesis would 

be linked to the alternative hypothesis Ha: µ1 - µ0 > 0 to be tested against the null hypothesis 

H0: µ1 - µ0 = 0 where µ0 designates mean activation in the caudate nucleus in the control 

condition and µ1 designates mean activation in the caudate nucleus in the experimental 

condition in which participants perform working memory task W. Now, the conditional in 

the modus tollens, used above to illustrate Duhem’s problem, will be: If H: the caudate 

nucleus is involved in the performance of working memory task W, then e: as participants 

perform W, there will be a significantly higher level of activity in the caudate nucleus 

compared to the control condition where they do nothing or perform a simpler or different 

task. Roughly speaking, there are two possible results of the experiment; one result is 

obtaining not-e, i.e. no significant activation in the caudate nucleus as participants perform 

W. The other possibility is that we do obtain significant activation in the caudate nucleus, 

which we can denote simply as e. 

Let us first discuss the case of obtaining not-e; that is, we carry out the experiment 

and we observe no significantly higher activation in the caudate nucleus as participants 

perform working memory task W. So, we do not reject the null hypothesis and, following 

the modus tollens, we conclude that the experimental hypothesis H is not true, i.e. the 

caudate nucleus is not involved in the performance of working memory task W. Against 
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this conclusion, one can rightly raise the Duhemian objection and suggest that the 

inferential procedure should rather be like this: If H1, H2, H3,…, Hn and A1, A2, A3,…,An, 

then e. Not-e. Therefore, not-H1 or not-H2 … or not- Hn, or not-A1 or not-A2… or not- An 

where H1 through Hn and A1 through An are auxiliary hypotheses and assumptions 

involved in our experiment that yielded not-e. H1 would be the experimental hypothesis of 

interest; namely “the caudate nucleus is involved in the performance of working memory 

task W” and e would be the prediction “as participants perform W, there will be significant 

activation in the caudate nucleus.” This time around, the assumption, A1, is replaced by the 

normalization procedure based on a probabilistic brain template, so we now have an 

empirical measure of the neuroanatomical variability across participants. This means that 

we have at least the approximate error probabilities associated with mappings between 

patterns of neural activity and neuroanatomical regions. If these error probabilities are low, 

then when not-e is obtained, that is, no significant activity in the caudate is observed, we 

can rule out the normalization procedure as a possible reason for obtaining not-e. Of 

course, there may be other reasons for obtaining not-e, but other components of 

neuroimaging experiments can, and should, be similarly scrutinized with respect to their 

error probabilities or error characteristics. This follows Mayo’s solution of Duhem’s 

problem: “Before experimental results can speak for or against a hypothesis under test, it is 

necessary to check and estimate the extent of any errors along the way—regarding the data 

and the auxiliaries” (1997; p. 231). If the normalization procedure incorporates empirical 

assessments of neuroanatomical variability, then we have at least some idea on the error 

probabilities associated with inferring that significant activity is in a certain brain region. If 

these error probabilities are low, then we can rule out the possibility of blaming the 

normalization procedure for obtaining not-e. 

Let us now look at the second possibility; we carry out the fMRI experiment and 

the results show that when participants perform W, there is a significantly higher level of 

activation in a group of voxels that we identify as the caudate nucleus, so we get e. 

Therefore, assuming that the experiment was carried out without any serious flaws, we 

reject the null hypothesis H0: µ1 - µ0 = 0 and accept the alternative hypothesis Ha: µ1 - µ0 > 0 

so we conclude that the caudate nucleus is in fact involved in the performance of working 
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memory task W. Of course, this result, namely experimental data that agree with our 

hypothesis, by itself will not be sufficient to infer that our experimental hypothesis is true. 

Among the ways in which one could object to this conclusion is saying that the observed 

result does not necessarily mean that there really was activation in the caudate nucleus. 

This is because it can be argued that some participants’ brains may have been different 

enough anatomically that although the results show activation in the caudate nucleus as 

identified by the Talairach space, it is possible that several participants had activation in 

the internal capsule, a brain structure adjacent to the caudate nucleus. Such an objection 

can be addressed if we have used a probabilistic brain atlas. That is, as we analyze our data 

we can take into consideration the error stemming from neuroanatomical variability. The 

probabilistic brain atlas would give us the probability of correctly identifying a group of 

voxels as a specific structure on the basis of hundreds of anatomical brain scans. In the 

case at hand, we are interested in significant levels of activity in the caudate nucleus, so we 

can consult the probabilistic atlas about the group of voxels we found to be activated. The 

atlas tells us how often that group of voxels has been identified as the caudate nucleus; 

specifically, 92% of the time it has been identified as the caudate nucleus, 6% of the time 

as internal capsule, 1% of the time as anterior horn of lateral ventricle, and less than 1% as 

other regions (Mazziotta et al., 1995). This information helps assess how often we may 

misidentify these brain regions. Assuming that no functional activation would be detected 

by fMRI in the lateral ventricle, we can say that the probability of misidentifying the group 

of voxels in this experiment as the caudate nucleus was 7% and this probability comes 

from hundreds of anatomical brain scans. Very rarely do fMRI experiments have more 

than 15 or 20 participants, so the probability of misidentification may be even lower in our 

experiment. The reason is that larger numbers of participants in an experiment would 

probably increase the chances of neuroanatomical variability producing errors in 

identification of brain regions. In the worst case, the probability of misidentifying the 

group of voxels was 7%, which is not too high, so with the error probability associated 

with this type of error at hand, we can say that it was improbable that this specific error 

was committed in the given experiment. Therefore, we can statistically rule out 

neuroanatomical variability as a serious source of error and infer more reliably and 
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accurately where activity really took place in the brain. 

The example of neuroanatomical variability across participants is only one among 

many aspects of a neuroimaging experiment that need to be scrutinized in this kind of 

error-statistical analysis. In order to deal with all the errors or flaws that preprocessing 

techniques may introduce, they should be analyzed for their error probabilities or error 

characteristics. Let me illustrate how we can begin carrying out such error-statistical 

analyses by looking at a specific preprocessing technique. Spatial filtering, or smoothing, 

is a computational procedure applied to raw fMRI data in order to reduce the noise due to 

non-task related sources of variability such as heart rate or respiration. If successful, one 

effect of smoothing is that noise is averaged out while the task-related signal is left 

unaffected (Lazar, 2008; p.48). Essentially, smoothing combines and spreads the data 

observed in multiple voxels, which ends up “blurring” the neuroimages. The fMRI signal 

as measured across voxels exhibit spatial correlations, that is, if a voxel is active, then with 

high probability nearby voxels are also active. There are many things that may be the 

reason for this; one probable reason is that adjacent regions of the brain may also be 

functionally similar. In addition, brain regions are highly connected with nearby regions, 

so when one group of voxels is active, this may cause nearby voxels to also be active. 

Using a spatial filter, which corresponds to spatial correlation expected to occur because of 

functional similarity and connections of brain regions, greatly improves the functional 

signal-to-noise ratio (SNR) (Huettel et al., 2004; p.277). A common blurring technique is 

applying a Gaussian filter, which can be characterized by the measure called “full width at 

half maximum (FWHM)” of the observed signal, which is defined as 2√2logσ for a 

Gaussian distribution that has variance σ
2
 (Lazar, 2008; p.48). When a Gaussian filter is 

applied to fMRI data, it spreads the observed signal over other voxels that are nearby. 

Spatial filters may be wide or narrow; narrow filters combine data from a few voxels, 

whereas wide filters combine data across many voxels (Huettel et al., 2004; p.276). The 

width of the spatial filter applied in an experiment is expressed in millimeters at half the 

maximum value of the fMRI signal. For example, a filter width of 10 mm FWHM 

combines data from approximately 3 voxels (Lazar, 2008; p.48). As the width of the spatial 

filter increases, more smoothing is applied combining data from more voxels.  
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Lazar (2008) cites two benefits of applying spatial filters. One benefit is that spatial 

filtering improves the functional SNR, thus making the fMRI experiment more powerful in 

detecting task-related signals. The other benefit of spatial filtering is that it makes the data 

have a distribution closer to a normal distribution. Thus, spatial filtering is supposed to 

improve the quality of data for statistical analyses. Huettel and colleagues (2004) suggest 

that spatial filtering improves the validity of statistical analyses. They point to the fact that 

in a volume of data, there may be as many as 102,400 voxels and if the threshold for 

significance is set at .05, then, assuming independence of voxels, when we carry out 

significance tests for each voxel to determine whether or not it is active, as many as 5,000 

voxels may be detected as active due to mere chance. They write that if spatial filtering is 

applied, then "there may be many fewer local maxima that exhibit significant activity" 

(ibid., p. 277). Thus, spatial filtering is helpful also for the multiple testing problem and 

allows researchers to use correction techniques less conservative than the common, highly 

conservative technique of Bonferroni correction. 

However, as Lazar (2008) describes, spatial filtering also has certain disadvantages. 

Researchers have to be very careful in choosing the width of the spatial filter they will 

employ. If the width is not appropriate, the filter applied may have negative effects on 

statistical analyses of preprocessed data. If the filter employed is too wide, that is, data 

from many voxels are combined, then data from regions that are not active may be 

included. This may occur when there is significant activation in a very small brain region, 

but if data from nearby nonactive voxels are combined in the filter, then the activation in 

the small region may be smoothed out and rendered undetectable. On the other hand, if the 

applied filter is too small, it will not be effective in improving the SNR, so nothing would 

be gained while spatial resolution would be degraded. Another disadvantage of spatial 

filtering is that it may cause the merging together of brain regions that are functionally 

different (ibid.). This may lead to contradictory fMRI findings in different experiments or 

even in different kinds of analyses of the same data set. All these disadvantages of spatial 

filters may introduce errors that may influence the experimental findings independently of 

the truth or falsity of the experimental hypotheses that fMRI experiments are meant to test. 

Thus, it is possible for researchers to obtain results that agree with their experimental 
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hypothesis not because the hypothesis is true, but because they applied a spatial filter to 

their data. Fransson et al. (2002) demonstrated clearly how this can happen. 

In an experiment, Fransson and his colleagues (2002) asked participants to do an 

episodic memory encoding task as fMRI data were collected. Then, they applied two 

different types of analyses to the same data set; one type of analysis included no spatial 

filtering, and the other included a spatial filter with a width of 8 mm, a filter size 

commonly used in fMRI research. The analysis with spatial filtering yielded significantly 

high amounts of activation in the hippocampus, whereas the analysis without spatial 

filtering did not. This result demonstrates that a finding may be obtained not necessarily 

because the hypothesis being tested is true, but rather because of some procedure applied 

to the data set in the preprocessing stages. As Franssen and his colleagues state, “the 

results of an fMRI study appear to be crucially dependent on the approach chosen for post-

acquisition data processing and analysis” (ibid., p. 981)., Lazar (2008) notes that, because 

of these and similar disadvantages, some research groups do not include any spatial 

filtering as part of their preprocessing protocols. This may be too radical a choice, because 

not applying any spatial filters may lead to an experiment with low power where task-

related signals of interest may go undetected. As with any other aspect of a given fMRI 

experiment, trying to find out the error characteristics of spatial filtering is a more 

beneficial approach than blindly applying spatial filters or not applying any spatial filter at 

all. Lazar advocates an approach in a similar vein. She suggests analyzing data sets without 

spatial filtering and then analyzing the same data sets several times with spatial filtering of 

varying widths. The results of these analyses can show us how dependent the experimental 

results are on spatial filtering. This could also tell us how often the inferences we draw 

from data are influenced by procedures like spatial filtering. Indeed, analyses of this type 

must be expanded to include other preprocessing procedures, such as distortion correction, 

temporal filtering, etc. Ideally, each preprocessing procedure would be analyzed with 

respect to its error characteristics and how it may influence the outcomes of statistical 

analyses.  

One paradigm for the assessment of the effects of preprocessing procedures has 

been proposed by Strother and his colleagues. The paradigm is called the “nonparametric 
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prediction, activation, influence, and reproducibility resampling” or NPAIRS framework 

(Strother et al., 2002; LaConte et al., 2003). This paradigm makes use of the notion of 

cross-validation where an fMRI data set is split in two halves; one half is designated as the 

“training” data and used to estimate the parameters for a predetermined model. The 

estimated parameters and the model are used to make predictions to be tested on the other 

half of data, which is designated as the “test” data. This process is repeated in a second run 

but with the training and test data switched, that is, in the second application of the 

process, test data are used for training and training data are used for testing. Thus, 

researchers can assess the prediction accuracy of their models. Reproducibility of the 

findings is assessed by comparing the results of statistical analyses on both halves of the 

data across several runs. The flexible nature of this analysis paradigm allows researchers to 

assess the effects of different types of preprocessing protocols on fMRI data. For example, 

LaConte et al. (2003) compared the effects of different preprocessing protocols on 

prediction accuracy and reproducibility. Across several runs of the split half process 

described above, they applied different preprocessing protocols, which they called analysis 

chains. Each analysis chain included different levels of preprocessing of the data; one 

chain included no preprocessing procedures, whereas others included normalization and 

different degrees of spatial filtering, e.g. one chain applied a narrow filter and another 

chain applied a wide filter. Then, they did final statistical analyses on data sets that came 

from these different analysis chains in order to assess the effects and contribution of 

different preprocessing protocols, or analysis chains, on prediction accuracy and 

reproducibility. The results showed that the greatest improvement in improving prediction 

accuracy and reproducibility came with spatial smoothing. 

However, as LaConte and his colleagues (2003) note, there are no general pre-data 

guidelines for what the optimal preprocessing protocol would be for all experiments. One 

reason for this is that the optimality of a preprocessing protocol is dependent not only on 

the elements of the protocol, as in how much smoothing or normalization was applied, but 

also on other experimental parameters such as the type of scanner used, design of 

experiment, etc. Therefore, the evaluation of preprocessing protocols with respect to their 

error characteristics and/or their effectiveness will have to be done on a case by case basis. 
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This is very much in line with the piece-meal approach of the error-statistical account as 

well as the essential notion that the severity of a test is always assessed post-data in terms 

of a specific hypothesis, the data set at hand, and the experiment that generated that data 

set. When we place the severity function, SEV(T, x0, H) in the context of fMRI 

experiments, we can think of the preprocessing protocol as another aspect of T, i.e. the 

experiment that generated the data. As Lazar (2008) and LaConte et al. (2003) suggest, we 

can apply different preprocessing protocols to the same set of raw fMRI data and then do 

statistical analyses on the data sets yielded by the different preprocessing protocols. In this 

way, we can assess the effects these protocols have on the results of tests on the same data 

set. The results of these analyses can be helpful in finding out the error probabilities 

associated with different preprocessing protocols and, in turn, how these affect the severity 

of the whole experiment as a test of the experimental hypothesis of interest. One crucial 

point is that as practitioners become more aware of the errors that preprocessing 

procedures may introduce, they start devising methods of identifying and controlling for 

the ways in which these errors arise in fMRI experiments. The NPAIRS framework is a 

good example of this kind of work. The error-statistical notions of error probabilities and 

severe tests can aid this methodological trend by supplying useful conceptual machinery 

and additional criteria for the assessment of errors and inferences in fMRI studies. 

In the error-statistical framework, we can break down a neuroimaging study in 

piece-meal fashion into its component parts and procedures from experimental design to 

initial data collection, and from preprocessing to statistical modeling and hypothesis tests. 

We can then assess the error probabilities, or error characteristics, associated with each 

component, as was done above regarding the use of probabilistic brain atlases or different 

types of preprocessing protocols. Thus, on a case by case basis, we can assess how these 

procedures may introduce errors and to what extent, if at all, they may influence the results 

independently of the truth or falsity of experimental hypotheses of interest. The component 

parts and procedures of an fMRI experiment can also be thought of as factors that 

determine the severity of that experiment as a test of the specific hypothesis of interest. If 

the components of an experiment may introduce errors with high probability or if they 

have characteristics prone to create biases in data, then this renders the experiment a low 
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severity test of the specific hypothesis of interest. The use of statistical models and 

significance tests is one of the most important components of an experiment. As described 

earlier, most fMRI experiments are done to learn about the truth or falsity of experimental 

hypotheses about relationships between neural activity and performance of cognitive tasks. 

These hypotheses are tested in significance tests which are formulated in the context of a 

statistical model of fMRI data. If a researcher wants an experiment with low error 

probabilities that can put the hypothesis of interest to a severe test, then one thing, among 

other things, that she has to make sure is that the hypothesis tests are carried out without 

flaws. To achieve this, the researcher must have adequate statistical models of fMRI data. 

If we recall the above Duhemian formulation with the auxiliary hypotheses and 

assumptions, we can think of the assumption that the statistical model chosen for an fMRI 

data set is adequate as one of those auxiliary assumptions. When an fMRI result does not 

fit the hypothesis of interest, Duhemian objections, similar to the ones above about 

neuroanatomical variability or inadequate preprocessing protocols, can be raised by saying 

that this result was obtained because the data were not adequately modeled.  The crucial 

point here is this; the auxiliary assumption that researchers have modeled the data 

adequately can be tested for in the error-statistical approach. Here, I briefly discuss how 

the error-statistical approach can aid in statistical modeling of fMRI data.  

The general linear model (GLM) is commonly used in fMRI research (Huettel et 

al., 2004; Lazar, 2008) and the factors in the GLM represent the hypothesized components 

of the data. Given the experimental data and model factors, researchers calculate the 

combination of factor weights that minimize the error term. If there is only one model 

factor, then the GLM is identical to a correlation analysis; if there is only one model factor 

with two levels, then the GLM is identical to a t-test. The form of the GLM can be 

expressed in the equation: Y = Xβ + ε where Y is the preprocessed fMRI data, which may 

be represented in a matrix of the time series data from all voxels, so it will have one 

column for each voxel and one row for each time point (Lazar, 2008; p.83). X represents 

the model factors and can be expressed in terms of a design matrix representing the stimuli 

or tasks presented to the participants during the course of the experiment. For example, 

pictures that were shown to participants, tasks they were asked to perform, and the time 
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points at which these were presented would be included in the design matrix. β represents 

the unknown coefficients of the model factors and ε represents the error, which is assumed 

to be normally distributed with mean zero and variance σ
2
 (ibid.). The GLM in this form is 

a basic example of how statistical tests are thought of in the fMRI literature. Statistical 

tests are conceived as tools to find out which experimental manipulations, i.e. factors, have 

the greatest effect on the preprocessed fMRI data. In other words, statistical tests are 

designed to discover whether or not manipulations of cognitive tasks produce significant 

increases in activation in the brain as a whole, or certain regions of the brain. 

The GLM, same as any other statistical model, comes with a set of probabilistic 

assumptions about the data generating mechanism. These are: 1) The data Y is normally 

distributed; 2) The process that generated the data Y is an independent process; 3) The 

expectation of data Y is linear in X; 4) The variance of data Y is homoscedastic, i.e. 

variance of Y is free of factors X (Spanos, 1998). Functional MRI researchers use the 

GLM to model data where they assume that: 1) Raw fMRI data can be modeled as the sum 

of separate factors and additive Gaussian noise, 2) Each factor may vary independently 

across voxels, and 3) Gaussian noise is independently and identically distributed (Huettel 

et al., 2004; p.342). Of course, the verification of these assumptions is of crucial 

importance in order to establish the validity of statistical inferences. However, Lazar 

(2008) states that the assumptions of the GLM in the context of fMRI “are surely 

unrealistic and hence violated in practice…” (p.85).  

Lazar (2008) discusses two general questions that arise in model validation in 

fMRI; one is a question about which model, among many alternative models, should be 

chosen to fit to the brain as a whole. Lazar states that the difficulty here is that the notion 

of fit does not have a precise definition in this context. The other question is about whether 

or not the same model should be fit to every voxel in the brain. Given the variability of 

fMRI data across voxels, it seems that if the same model is fit to every voxel, some voxels 

will be underfit while others will be overfit. On the other hand, if different models are fit to 

different voxels, some necessary statistical procedures cannot be used. For example, 

detecting contiguous groups of active voxels is crucial for any experiment; one way in 
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which this can be achieved is by applying random field thresholding. However, this 

thresholding technique cannot be used if different models are used for different voxels. 

Even though the above problems are indeed serious, the fundamental problem in 

modeling fMRI data is the fact that assumptions of standard models such as GLM are 

violated in the practice of fMRI research. For example, the independence assumption of 

GLM is violated in fMRI experiments. One reason for this may be that regions of the brain 

are densely connected with each other and when one region is activated this causes 

activations in nearby regions as well. Thus, the process that generates fMRI data is not 

always an independent process and this may threaten the validity and reliability of 

statistical inferences. This difficulty may be one of the factors responsible for the relatively 

high incidence of contradictory findings in the fMRI literature. Lazar (2008) calls attention 

to several drawbacks in fMRI analyses that are caused by problems of model validation. 

Some of these drawbacks are misspecification of models, choosing oversimplistic models 

due to a lack of criteria for systematic evaluation of models, and improper choice of 

models on the basis of number of active voxels, where a model is considered to be a better 

model if it detects more active voxels. All these may introduce biases or flaws in the data 

analyses and significance tests, increase error probabilities, and lead to erroneous 

inferences. 

In this environment where fundamental problems of data modeling threaten the 

validity and reliability of inferences, as recognized by fMRI researchers like Petersson and 

his colleagues (1999) and Lazar (2008) as well as others, the error-statistical approach to 

model validation proposed by Mayo and Spanos (2004; 2010; 2011) can be useful. A 

central aspect of this approach is misspecification (M-S) testing, which includes methods 

of testing the model assumptions about the data generating mechanism. Another essential 

element of M-S testing is respecification; if assumptions of a model are violated, iterative 

procedures are applied to accommodate flawed assumptions in respecified models. In the 

end, a statistically adequate model of the data at hand is obtained, which can support 

reliable inferences about the hypotheses of interest. Another advantage of M-S testing is 

that it distinguishes between problems of model specification and problems of model 

selection where researchers select a model from an assumed family of models. M-S testing 
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provides a method for developing statistically adequate models of given data sets. Once we 

have a data set, say preprocessed fMRI data, we can proceed by what Mayo and Spanos 

(2004) call the probabilistic reduction approach in which we think of the set of all possible 

statistical models of the mechanism that generated the data. Every statistical model is a set 

of probabilistic assumptions about the data generating mechanism and these assumptions 

can be grouped under three broad categories: distribution, dependence, and heterogeneity. 

Given a specific fMRI data set, we can start the specification process by asking general 

questions about the data set, such as ‘are the data independent over time?’, ‘are the data 

from different voxels, or different regions of interest, independent?’, ‘what is the 

distribution of the data? e.g. normal or skewed?’, ‘are the data from different voxels, or 

different regions of interest, identically distributed?’ The answers to these questions will 

eliminate certain possibilities for the model to be chosen. For example, as has been noted 

before, in fMRI, data from neighboring voxels are not independent. In fact, often there is 

spatial correlation between data from adjacent voxels as is to be expected given the highly 

connected anatomy and functioning of the brain. Thus, any model that cannot 

accommodate this dependence in the data would be eliminated as a potential model. 

Obviously, given the large size and complexity of fMRI data sets, the application of M-S 

testing to fMRI data will be a serious undertaking. However, when researchers proceed 

according to the probabilistic reduction approach, they can develop statistically adequate 

models of data, which would control and minimize error probabilities associated with 

modeling and significance tests in fMRI. Thus, when M-S testing is properly applied and 

adequate models of data are specified, no Duhemian objections can be raised about issues 

of modeling. This would mean that another component of the fMRI experiment, namely 

statistical modeling of data, is ruled out a source of error in the experiment as a whole. 

In this paper, I have demonstrated how the error-statistical approach can help us 

better understand, formulate, and tackle Duhemian problems in fMRI. Error-statistical 

analyses provide estimates of the probability of making erroneous inferences due to 

problems in different stages of an experiment. By looking at these probabilities for any 

given experiment, we can more accurately assess the reliability of our inferences. The 

error-statistical approach can give us the kind of characterization necessary for complete 
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and accurate assessments of inferential steps and we can go the inferential distance, as it 

were. In other words, with philosophical and statistical arguments using the notions of 

error probabilities and severe tests, we can counter those who are skeptical of the epistemic 

value of fMRI findings. Duhem’s problem provides the most useful conceptual framework 

in which we can describe general methodological and inferential problems in functional 

neuroimaging. The error-statistical account helps us clearly formulate and tackle these 

problems. Thus, we can determine the kind of knowledge functional neuroimaging can 

reliably provide and the conditions under which it can provide it without prematurely 

conceding to skepticism or pessimism about the epistemic value of neuroimaging findings.
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